
How to Create Topic Maps

Ronny Kerk, Stefan Groschupf
media style GmbH, Halle, Germany
email: ronny.kerk@gmx.de, sg@media-style.com
2003-10-23

Abstract

This paper is a work report of an intershipt at media style and describes the search for a
feasible approach for Topic Maps creating. After having a look on Topic Map authoring
by humans, two strategies for automatic Topic Map generation are discussed in the main
part of this report. One is to use semantic metadata of the corpus the Topic Map should
be created of and the second is to use named entity extraction for getting the topics and
further using a part-of-spech-tagger for getting their associations. We argue, that the
latter is a promising approach for large text bases with unstructured documents.
Though the main concepts of Topic Maps will be mentioned, it is not our purpose to fully
explain the technology of Topic Maps. There are other papers which do this [1, 2].

Contents

Introduction
1. The XTM-Standard
2. Topic Maps for Java
3. Topic Map Authoring
4. Automatic Topic Map Generation

4.1 Using available Metadata
4.2 Using Named Entity Extraction with GATE

5. Conclusion and Perspective
References

Introduction

The Topic Map concept provides a possibility to represent knowledge about a specific domain, based
on a corpus of - mostly unstructured - documents. You can compare a Topic Map roughly with the
index at the end of a book. There are a lot of keywords (topics) which refer to one or more pages,
paragraphs or figures in the book (occurrences).
A Topic Map is more than this. Additionally the types of topics (e.g. person) and occurrences (e.g.
html-site) can be defined, but the richest feature for knowledge-representation is the possibility to
describe relations and classifications (associations in Topic Maps) between two or more topics.
Each association can own a type (e.g. is component of), too, and has several members (concrete
topics) including their role playing in the association.
There is also a pool of pre-defined topics with a special meaning called published subject indicators.
For instance there are association-types (each type is a topic, too) representing class-instance-
relations.

There are mostly two widely discussed application areas for Topic Maps. The first is their usage to
navigate through the documents a Topic Map is based on and the second is the usage for representing
the knowledge of the documents for further use. Both use cases do not exclude each other.

So it is a great advantage for a user who has to browse through a lot of documents - for example the
output of a search-engine - when he can retrieve information about what is connected to the searched
subject and how.

Our task was to find out how to create a Topic Map out of a large text-corpus of unstructured
documents and save the contained knowledge about its subjects. An important aspect of this task was
that any discovered or own approach should be usable in practice and not only serve as a scientific
theory.
Furthermore it was not our purpose to reinvent the wheel. So if there was an open-source software
which provides what we were searching for - or parts of it - it was considered for reuse.
The programming language of choice was Java because of its portability to different operating
systems. Furthermore it is powerful and easy to understand.

The remainder of this paper is structured as follows. First we briefly introduce the Topic Map
standard XTM. Then we discuss the usage of TM4J, a Java API that encapsulates the handling of
XML Topic Maps, in our task to automate the generation of Topic Maps. After that an outline of
manual Topic Map generation is presented. In chapter 4 we discuss the two methods to automatically
generate Topic maps based on meta data or via named entity extraction. We conclude this paper with
a summary of our work and directions for future research.

1. The XTM-Standard

It is always a good decision to use standards if there exist some. For Topic Maps there is an ISO-
standard [3] and an applicability-standard based on XML which is called XTM (XML Topic Maps)
[4]. It specifies the usable items and the structure of XTM-files which represent Topic Maps. In
addition to topics, associations and occurrences it is possible to define scopes for certain items of a
Topic Map. Scopes are often used for multilingual Topic Maps.
Along with the subject indicators mentioned in the introduction and resource referencers which refer
to an addressable subject (e.g. if a certain website is the topic), scopes enable merging of several
Topic Maps.
Without these features problems occur while merging. Especially if there are two topics which have
the same title (base name) but different meanings within their scope.

Our self-created Topic Map should be created in the XTM-format or at least be transformable into it.

2. Topic Maps for Java

TM4J (Topic Maps for Java) [5] is an open-source software package supporting the XTM-standard.
The set of Java-APIs is enabling import, export and manipulation of Topic Maps. With TM4J it is
possible to create, alter or delete just single elements of a Topic Map as well as to merge Topic Maps,
get statistical information about them or extract chosen fragments.
The processing of Topic Maps takes place in main memory and the persistent data can alternatively
be saved in an object-oriented or relational database. An XTM-file with thousands of topics would be
too large to be processed at an acceptable speed, so the XTM-format is more suitable for transporting
and exchanging Topic Maps.

TM4J is easy to use and provides all the operations we needed in our project.

3. Topic Map Authoring

For extracting relevant topics and their associations it seems necessary to understand the content of
the documents. It is a difficult job to decide whether a word (often a noun) or a word group is a topic
or not. The Topic Map concept allows to make any word a topic.
Two readers (e.g. two knowledge engineers) will most likely develop two different Topic Maps just
of the same corpus, dependent on their domain-specific knowledge and their background.
Nevertheless a handmade Topic Map should reach a much higher quality than a machine-made.

As described in [6] and [7], a feasible way for Topic Map authoring is to go through the corpus first
and define a template for possible topic types, occurrence types and associations with their possible
member-role-structures.

With help of this template the Topic Map creators have to extract the topics and associations by
reading the documents using their knowledge about the certain domain.
The assignment of the occurrences of topics can be done while topic-extracting or later in an
automatic phase. A parser could look for topic-names occurring more frequent in a document than
expected of documents of the domain. Of course this doesn't work if the document is not machine-
readable (e.g. a figure).
However, the questions are how much time and manpower does it need to get a high-quality Topic
Map out of a large corpus, and is manually updating the Topic Map as quick as new documents are
attached to the corpus.

Writing a template-creator-tool and implementing computer dialogs which support a human Topic
Map creator while extracting items and arranging them with the template could have been the next
steps of our work. The dialogs could give any suggestions for potential topics and associations for
instance.
According to our given large text-corpus, we didn’t follow this way and concentrated on finding out if
there is a fully automatic solution for Topic Map generation.

4. Automatic Topic Map Generation

4.1 Using available Metadata

A way for Topic Map creating with less effort is using of available semantic metadata of the
documents. For XML-documents with a previously known structure (e.g. via a DTD or schema) it is
possible to transform them via XSLT (XSL Transformations) [8] directly into XTM-files as suggested
in [9]. The precondition in this case is – next to the required metadata – a defined Topic Map
template, as described above, with all the types that can occur. With help of this template and the
knowledge about the metadata an XSLT has to be developed and the automatic transformation-phase
can start.

There is also an open-source software for supporting such transformations using metadata with the
name MDF (A Metadata Processing Framework) [10]. It was written in Java by Kal Ahmed, the main
developer of TM4J. The modular design makes MDF flexible for usage with different metadata
structures. The XTM-standard and some other formats are supported as output.

Nevertheless, for our task this was no way simply because we had no structured documents.

4.2 Using Named Entity Extraction with GATE

A possibility for automatic topic extraction is to use a named entity extraction tool.
A named entity consists of a type (e.g. person) and a concrete string (e.g. Roger Wilco). This is
exactly our understanding of a topic in a Topic Map. At the University of Sheffield a programme
called GATE (General Architecture for Text Engineering) [11] has been developed which provides -
among other things - named entity extraction. GATE is an open-source software written in Java, so
we decided to extend it for our purpose. The software consists of several modules, which can be
invoked via a GUI or directly out of a Java programme.
There is a gazetteer-module looking for all the words on the gazetteer-list if they occur in any
document of the corpus and annotating the matches with a type (e.g. male first-name).
With our own gazetteer-lists we extended GATE’s standard entity types (e.g. persons, locations and
organizations) by our domain-dependent types (e.g. product names).
It is a simple method of GATE to go through word-lists and although this is not the fastest way it
worked quite good for our purpose.

The annotations of the gazetteer-module will be used in transducer-modules, which processes self-
written JAPE-grammars (Java Annotation Patterns Engine) [12] to match words and patterns in a
document and make annotations to the matches. These annotations can be reused for a new matching
with another grammar.

With a first self-written grammar we adapted GATE to our purpose.
The standard named entity transducer that comes with GATE doesn’t take notice of the words next to
a match, even if the match is only part of a compound noun or another group of words belonging
together (e.g. Roger Wilco’s starship).
Our grammar tries to match complete compound nouns and annotates them as potential topics which
inherit the type of a named entity if possible. For example if the right side of a match is typed by
GATE’s named entity transducer as “vehicle”, the whole noun group inherits the type “vehicle”.

Another standard module of GATE is a part-of-speech-tagger which tags each word with its
grammatical type and tense.
We used this to annotate the verbs occurring directly between two of our matched topics with a
second JAPE-grammar. These matches are our automatically extracted associations in the Topic Map.
The verb represents the association type (e.g. marry) and the topics before and after the verb are the
association members.

We tried to improve the association extraction using GATE’s coreferencer-module but this has proven
too slow to be feasible. A coreference chain defines which pronoun belongs to which noun. So we
could find associations not only directly between two topics but also between topics and pronouns
referring to topics (e.g. she is married with him). The coreference also helps with different terms
referring to the same item (e.g. Mr. R. Wilco and Roger Wilco are identical).

Before writing the association type into our Topic Map, we built the infinitive of the verb with help of
the annotated tense by the part-of-speech-tagger. So one and the same association will not be saved
several times only because of its different syntax.
Our first idea was using a stemmer for this task (e.g. Lovins [13] or Porter [14]), but this idea was
discarded because of the insufficient quality of a stem for this purpose.
We could have used a synonym dictionary, too, but you have to be careful with deleting
characteristics. The same applies to the topics, which are nouns in our case and can occur in singular
and plural.

The assignment of the occurrences of topics can be realised while topic extraction phase or in the end
by parsing the documents and analysing the frequency of occurring topic names.

5. Conclusions and Perspective

We saw that the Topic Map creating strategy is heavily dependent on the input corpus and the
intended use of the Topic Map. If the aim is a high-quality Topic Map with strict structure and
content (e.g. as navigation index of a manual) there will be the need for manually Topic Map
authoring.
Using available metadata of a corpus can also lead to a strict Topic Map but is only usable for highly
structured documents with a known semantic structure.
In our case with plenty of unstructured documents we were forced to choose another strategy. We
found out that named entity extraction is suitable for getting topics out of documents. The constraint
is that no decision is made whether a named entity should become a topic or not. It is possible that not
every named entity is a topic in any case and there may exist topics which are not marked as named
entities. Though the main challenge for automatic Topic Map generation is the extraction of
associations between topics. Therefore we used the verbs occurring directly between two topics
within one and the same sentence.

With improving text-recognition and intelligent linguistic methods the extraction of topics and
associations will be raised. Especially if relations between several topics, occurring not closely to
each other in the text, could be recognized in future.

References

[1] A. Altenburger: Authoring XTM Topic Maps, Part I, http://topicmaps.it.bond.edu.au/docs/
6?style=printable, 2000

[2] H. H. Rath: The Topic Maps Handbook, White Paper, http://www.empolis.com/download/
docs/whitepapers/empolistopicmapswhitepaper_eng.pdf, 2003

[3] ISO/IEC 13250: Topic Maps – Information Technology, Document Description and
Processing Languages, http://www.y12.doe.gov/sgml/sc34/document/0129.pdf, 1999

[4] TopicMaps.Org: XML Topic Maps (XTM) 1.0, http://www.topicmaps.org/xtm/1.0/, 2001

[5] K. Ahmed et al.: TM4J – Topic Maps for Java, Version 0.8.2, http://sourceforge.net/
projects/tm4j, 2003

[6] T. Bandholtz: A Taxi in Knowledge Land - A Use Case that Combines Topic Maps and Web
Services in a Public Portal, http://www.idealliance.org/papers/xmle02/dx_xmle02/
papers/03-05-03/03-05-03.html, last access: 2003-09-29

[7] S. Pepper, L. M. Garshol: The XML Papers – Lessons on Applying Topic Maps,
http://www.ontopia.net/topicmaps/materials/xmlconf.html, last access: 2003-09-29

[8] W3C: XSL Transformations (XSLT), version 1.0, http://www.w3.org/TR/xslt, 1999

[9] J. Reynolds, W. E. Kimber: Topic Map Authoring With Reusable Ontologies and Automated
Knowledge Mining, http://www.idealliance.org/papers/xml02/dx_xml02/
papers/04-03-02/04-03-02.pdf, last access: 2003-09-30

[10] K. Ahmed: MDF – A Metadata Processing Framework, version 0.3,
http://www.techquila.com/mdf.html, last access: 2003-09-30

[11] H. Cunningham et al.: GATE – A General Architecture for Text Engineering, Version 2.2,
http://gate.ac.uk, 2003

[12] H. Cunningham et al.: Developing Language Processing Components with GATE (a User
Guide), For GATE version 2.1, http://gate.ac.uk/sale/tao/tao.pdf, pp 86-98, 2003

[13] J. P. Lovins: Mechanical Translation and Computational Linguistics, Vol. 11, pp 22-31, 1968,
after E. Frank: Lovins-Stemmer-Java, version 1.0, http://sourceforge.net/projects/
stemmers, 2001

[14] M. F. Porter: An Algorithm for Suffix Stripping, Vol. 14, no. 3, pp 130-137, 1980, code at
http://www.tartarus.org/~martin/PorterStemmer, last access: 2003-09-29

